
Package index
-
prioritizrprioritizr-package - prioritizr: Systematic Conservation Prioritization in R
-
get_sim_pu_polygons()get_sim_zones_pu_polygons()get_sim_pu_lines()get_sim_pu_points()get_sim_pu_raster()get_sim_locked_in_raster()get_sim_locked_out_raster()get_sim_zones_pu_raster()get_sim_features()get_sim_zones_features()get_sim_phylogeny()get_sim_complex_pu_raster()get_sim_complex_locked_in_raster()get_sim_complex_locked_out_raster()get_sim_complex_features()get_sim_complex_historical_features() - Get simulated conservation planning data
-
objectives - Add an objective
-
add_max_cover_objective() - Add maximum coverage objective
-
add_max_features_objective() - Add maximum feature representation objective
-
add_max_phylo_div_objective() - Add maximum phylogenetic diversity objective
-
add_max_phylo_end_objective() - Add maximum phylogenetic endemism objective
-
add_max_utility_objective() - Add maximum utility objective
-
add_min_largest_shortfall_objective() - Add minimum largest shortfall objective
-
add_min_penalties_objective() - Add minimum penalties objective
-
add_min_set_objective() - Add minimum set objective
-
add_min_shortfall_objective() - Add minimum shortfall objective
-
targets - Add representation targets
-
add_absolute_targets() - Add absolute targets
-
add_auto_targets(<ConservationProblem>,<character>)add_auto_targets(<ConservationProblem>,<list>)add_auto_targets(<ConservationProblem>,<TargetMethod>) - Add targets automatically
-
add_group_targets() - Add targets based on feature groups
-
add_manual_targets() - Add manual targets
-
add_relative_targets() - Add relative targets
-
spec_absolute_targets() - Specify absolute targets
-
spec_area_targets() - Specify targets based on area units
-
spec_duran_targets() - Specify targets following Durán et al. (2020)
-
spec_interp_absolute_targets() - Specify targets based on interpolating absolute thresholds
-
spec_interp_area_targets() - Specify targets based on interpolating area-based thresholds
-
spec_jung_targets() - Specify targets following Jung et al. (2021)
-
spec_max_targets() - Specify targets based on maxima
-
spec_min_targets() - Specify targets based on minima
-
spec_polak_targets() - Specify targets following Polak et al. (2015)
-
spec_pop_size_targets() - Specify targets based on population size
-
spec_relative_targets() - Specify relative targets
-
spec_rl_ecosystem_targets() - Specify targets based on the IUCN Red List of Ecosystems
-
spec_rl_species_targets() - Specify targets based on the IUCN Red List of Threatened Species
-
spec_rodrigues_targets() - Specify targets following Rodrigues et al. (2004)
-
spec_rule_targets() - Specify targets following a set of rules
-
spec_ward_targets() - Specify targets following Ward et al. (2025)
-
spec_watson_targets() - Specify targets following Watson et al. (2010)
-
spec_wilson_targets() - Specify targets following Wilson et al. (2010)
-
constraints - Conservation problem constraints
-
add_contiguity_constraints(<ConservationProblem>,<ANY>,<ANY>)add_contiguity_constraints(<ConservationProblem>,<ANY>,<data.frame>)add_contiguity_constraints(<ConservationProblem>,<ANY>,<matrix>) - Add contiguity constraints
-
add_feature_contiguity_constraints(<ConservationProblem>,<ANY>,<data.frame>)add_feature_contiguity_constraints(<ConservationProblem>,<ANY>,<matrix>)add_feature_contiguity_constraints(<ConservationProblem>,<ANY>,<ANY>) - Add feature contiguity constraints
-
add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<character>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<numeric>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<matrix>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<Matrix>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<Raster>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<SpatRaster>)add_linear_constraints(<ConservationProblem>,<ANY>,<ANY>,<dgCMatrix>) - Add linear constraints
-
add_locked_in_constraints() - Add locked in constraints
-
add_locked_out_constraints() - Add locked out constraints
-
add_mandatory_allocation_constraints() - Add mandatory allocation constraints
-
add_manual_bounded_constraints() - Add manually specified bound constraints
-
add_manual_locked_constraints() - Add manually specified locked constraints
-
add_neighbor_constraints(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<ANY>)add_neighbor_constraints(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<data.frame>)add_neighbor_constraints(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<matrix>)add_neighbor_constraints(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<array>) - Add neighbor constraints
-
penalties - Add a penalty
-
add_asym_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<matrix>)add_asym_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<Matrix>)add_asym_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<data.frame>)add_asym_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<dgCMatrix>)add_asym_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<array>) - Add asymmetric connectivity penalties
-
add_boundary_penalties(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<ANY>,<data.frame>)add_boundary_penalties(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<ANY>,<matrix>)add_boundary_penalties(<ConservationProblem>,<ANY>,<ANY>,<ANY>,<ANY>,<ANY>) - Add boundary penalties
-
add_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<matrix>)add_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<Matrix>)add_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<data.frame>)add_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<dgCMatrix>)add_connectivity_penalties(<ConservationProblem>,<ANY>,<ANY>,<array>) - Add connectivity penalties
-
add_feature_weights(<ConservationProblem>,<numeric>)add_feature_weights(<ConservationProblem>,<matrix>) - Add feature weights
-
add_linear_penalties(<ConservationProblem>,<ANY>,<character>)add_linear_penalties(<ConservationProblem>,<ANY>,<numeric>)add_linear_penalties(<ConservationProblem>,<ANY>,<matrix>)add_linear_penalties(<ConservationProblem>,<ANY>,<Matrix>)add_linear_penalties(<ConservationProblem>,<ANY>,<Raster>)add_linear_penalties(<ConservationProblem>,<ANY>,<SpatRaster>)add_linear_penalties(<ConservationProblem>,<ANY>,<dgCMatrix>) - Add linear penalties
-
add_neighbor_penalties(<ConservationProblem>,<ANY>,<ANY>,<matrix>)add_neighbor_penalties(<ConservationProblem>,<ANY>,<ANY>,<data.frame>)add_neighbor_penalties(<ConservationProblem>,<ANY>,<ANY>,<ANY>)add_neighbor_penalties(<ConservationProblem>,<ANY>,<ANY>,<array>) - Add neighbor penalties
-
calibrate_cohon_penalty() - Calibrate penalties with Cohon's method
-
decisions - Add decision types
-
add_binary_decisions() - Add binary decisions
-
add_proportion_decisions() - Add proportion decisions
-
add_semicontinuous_decisions() - Add semi-continuous decisions
-
solvers - Add solvers
-
add_cbc_solver() - Add a CBC solver
-
add_cplex_solver() - Add a CPLEX solver
-
add_default_solver() - Add default solver
-
add_gurobi_solver() - Add a Gurobi solver
-
add_highs_solver() - Add a HiGHS solver
-
add_lpsymphony_solver() - Add a SYMPHONY solver with lpsymphony
-
add_rsymphony_solver() - Add a SYMPHONY solver with Rsymphony
-
portfolios - Add portfolios
-
add_cuts_portfolio() - Add Bender's cuts portfolio
-
add_default_portfolio() - Add a default portfolio
-
add_extra_portfolio() - Add an extra portfolio
-
add_gap_portfolio() - Add a gap portfolio
-
add_shuffle_portfolio() - Add a shuffle portfolio
-
add_top_portfolio() - Add a top portfolio
-
summaries - Evaluate solutions using summary statistics
-
eval_asym_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<matrix>)eval_asym_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<Matrix>)eval_asym_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<data.frame>)eval_asym_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<dgCMatrix>)eval_asym_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<array>) - Evaluate asymmetric connectivity of solution
-
eval_boundary_summary() - Evaluate boundary length of solution
-
eval_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<matrix>)eval_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<Matrix>)eval_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<data.frame>)eval_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<dgCMatrix>)eval_connectivity_summary(<ConservationProblem>,<ANY>,<ANY>,<array>) - Evaluate connectivity of solution
-
eval_cost_summary() - Evaluate cost of solution
-
eval_feature_representation_summary() - Evaluate feature representation by solution
-
eval_n_summary() - Evaluate number of planning units selected by solution
-
eval_target_coverage_summary() - Evaluate target coverage by solution
-
importanceirreplaceability - Evaluate solution importance
-
eval_ferrier_importance() - Evaluate solution importance using Ferrier scores
-
eval_rank_importance() - Evaluate solution importance using incremental ranks
-
eval_rare_richness_importance() - Evaluate solution importance using rarity weighted richness scores
-
eval_replacement_importance() - Evaluate solution importance using replacement cost scores
-
simulate_cost() - Simulate cost data
-
simulate_data() - Simulate data
-
simulate_species() - Simulate species habitat suitability data
-
fast_extract() - Fast extract
-
intersecting_units() - Find intersecting units
-
marxan_problem() - Marxan conservation problem
-
marxan_boundary_data_to_matrix() - Convert Marxan boundary data to matrix format
-
marxan_connectivity_data_to_matrix() - Convert Marxan connectivity data to matrix format
-
adjacency_matrix() - Adjacency matrix
-
boundary_matrix() - Boundary matrix
-
branch_matrix() - Branch matrix
-
connectivity_matrix() - Connectivity matrix
-
proximity_matrix() - Proximity matrix
-
rij_matrix() - Feature by planning unit matrix
-
rescale_matrix() - Rescale a matrix
-
compile() - Compile a problem
-
feature_abundances() - Feature abundances
-
feature_names() - Feature names
-
number_of_features() - Number of features
-
number_of_planning_units() - Number of planning units
-
number_of_total_units() - Number of total units
-
number_of_zones() - Number of zones
-
presolve_check() - Presolve check
-
run_calculations() - Run calculations
-
write_problem() - Write problem
-
zone_names() - Zone names
-
new_waiver() - Waiver
-
optimization_problem() - Optimization problem
-
ConservationModifier-classConservationModifier - Conservation problem modifier class
-
ConservationProblem-classConservationProblem - Conservation problem class
-
Constraint-classConstraint - Constraint class
-
Decision-classDecision - Decision class
-
Objective-classObjective - Objective class
-
OptimizationProblem-classOptimizationProblem - Optimization problem class
-
Penalty-classPenalty - Penalty class
-
Portfolio-classPortfolio - Portfolio class
-
Solver-classSolver - Solver class
-
Target-classTarget - Target class
-
TargetMethod-classTargetMethod - Target setting method class
-
Weight-classWeight - Weight class
-
nrow(<OptimizationProblem>)ncol(<OptimizationProblem>)ncell(<OptimizationProblem>)modelsense()vtype()obj()A()rhs()sense()lb()ub()col_ids()row_ids()compressed_formulation()set_obj()set_lb()set_ub()append_linear_constraints()remove_last_linear_constraint() - Optimization problem methods
-
nrow(<tbl_df>)ncol(<tbl_df>)as.list(<tbl_df>) - Manipulate tibbles
-
show(<ConservationModifier>)show(<ConservationProblem>)show(<OptimizationProblem>)show(<Solver>) - Show
-
linear_interpolation() - Linear interpolation
-
loglinear_interpolation() - Log-linear interpolation
-
knit_print.ConservationProblem()knit_print.OptimizationProblem() - Print an object for knitr package.
-
as_km2() - Standardize unit to km2
-
as_per_km2() - Standardize unit to density per km2
-
add_connected_constraints()add_corridor_constraints()set_number_of_threads()get_number_of_threads()is.parallel()add_pool_portfolio()connected_matrix()feature_representation()replacement_cost()rarity_weighted_richness()ferrier_score()distribute_load()new_optimization_problem()predefined_optimization_problem()add_loglinear_targets() - Deprecation notice