These functions are used to query and update a optimization_problem().
Usage
# S4 method for class 'OptimizationProblem'
nrow(x)
# S4 method for class 'OptimizationProblem'
ncol(x)
# S4 method for class 'OptimizationProblem'
ncell(x)
modelsense(x)
# S4 method for class 'OptimizationProblem'
modelsense(x)
vtype(x)
# S4 method for class 'OptimizationProblem'
vtype(x)
obj(x)
# S4 method for class 'OptimizationProblem'
obj(x)
A(x)
# S4 method for class 'OptimizationProblem'
A(x)
rhs(x)
# S4 method for class 'OptimizationProblem'
rhs(x)
sense(x)
# S4 method for class 'OptimizationProblem'
sense(x)
lb(x)
# S4 method for class 'OptimizationProblem'
lb(x)
ub(x)
# S4 method for class 'OptimizationProblem'
ub(x)
col_ids(x)
# S4 method for class 'OptimizationProblem'
col_ids(x)
row_ids(x)
# S4 method for class 'OptimizationProblem'
row_ids(x)
compressed_formulation(x)
# S4 method for class 'OptimizationProblem'
compressed_formulation(x)
set_obj(x, obj)
# S4 method for class 'OptimizationProblem,ANY'
set_obj(x, obj)
set_lb(x, lb)
# S4 method for class 'OptimizationProblem,ANY'
set_lb(x, lb)
set_ub(x, ub)
# S4 method for class 'OptimizationProblem,ANY'
set_ub(x, ub)
append_linear_constraints(x, rhs, sense, A, row_ids)
# S4 method for class 'OptimizationProblem,ANY,ANY,ANY,ANY'
append_linear_constraints(x, rhs, sense, A, row_ids)
remove_last_linear_constraint(x)
# S4 method for class 'OptimizationProblem'
remove_last_linear_constraint(x)Arguments
- x
optimization_problem()object.- obj
numericvector containing a new linear coefficient for each decision variable in the problem.- lb
numericvector containing a new lower bound for each decision variable in the problem.- ub
numericvector containing a new upper bound for each decision variable in the problem.- rhs
numericvector with the right-hand-side values for new constraints.- sense
charactervector with senses for new constraints (i.e.,">=","<=", or "=" values).- A
Matrix::sparseMatrix()matrix with coefficients for new constraints.- row_ids
charactervector with identifiers for new constraints.
Value
A Matrix::dgCMatrix, numeric vector,
numeric vector, or scalar integer depending on the method
used.
Details
The following functions are used to query data.
nrow(x)integernumber of rows (constraints).ncol(x)integernumber of columns (decision variables).ncell(x)integernumber of cells.modelsense(x)characterdescribing if the problem is to be maximized ("max") or minimized ("min").vtype(x)characterdescribing the type of each decision variable: binary ("B"), semi-continuous ("S"), or continuous ("C")obj(x)numericvector specifying the objective function.A(x)Matrix::dgCMatrixmatrix object defining the problem matrix.rhs(x)numericvector with right-hand-side linear constraintssense(x)charactervector with the senses of the linear constraints ("<=",">=","=").lb(x)numericlower bound for each decision variable. Missing data values (NA) indicate no lower bound for a given variable.ub(x)numericupper bounds for each decision variable. Missing data values (NA) indicate no upper bound for a given variable.number_of_planning_units(x)integernumber of planning units in the problem.number_of_features(x)integernumber of features the problem.
The following functions are used to update data. Note that these
functions return an invisible TRUE indicating success.
set_obj(x, obj)override the objective in the problem. Here,
objis anumericvector containing a new linear coefficient for each decision variable in the problem.set_lb(x, lb)override the variable lower bounds in the problem. Here,
lbis anumericvector containing a new lower bound.for each decision variable in the problem.set_ub(x, ub)override the variable upper bounds in the problem. Here,
ubis anumericvector containing a new upper bound.for each decision variable in the problem.remove_last_linear_constraint()remove the last linear constraint added to a problem.
append_linear_constraints(x, A, sense, rhs, row_ids)add an additional linear constraints to a problem. Here,
Ais aMatrix::sparseMatrix()matrix,senseis acharactervector with constraint senses (i.e.,">=","<=", or "=" values),rhsis anumericvector with the right-hand-side values, androw_idsis acharactervector with identifiers.
