These functions are used to query and update a optimization_problem()
.
Usage
# S4 method for class 'OptimizationProblem'
nrow(x)
# S4 method for class 'OptimizationProblem'
ncol(x)
# S4 method for class 'OptimizationProblem'
ncell(x)
modelsense(x)
# S4 method for class 'OptimizationProblem'
modelsense(x)
vtype(x)
# S4 method for class 'OptimizationProblem'
vtype(x)
obj(x)
# S4 method for class 'OptimizationProblem'
obj(x)
A(x)
# S4 method for class 'OptimizationProblem'
A(x)
rhs(x)
# S4 method for class 'OptimizationProblem'
rhs(x)
sense(x)
# S4 method for class 'OptimizationProblem'
sense(x)
lb(x)
# S4 method for class 'OptimizationProblem'
lb(x)
ub(x)
# S4 method for class 'OptimizationProblem'
ub(x)
col_ids(x)
# S4 method for class 'OptimizationProblem'
col_ids(x)
row_ids(x)
# S4 method for class 'OptimizationProblem'
row_ids(x)
compressed_formulation(x)
# S4 method for class 'OptimizationProblem'
compressed_formulation(x)
set_obj(x, obj)
# S4 method for class 'OptimizationProblem,ANY'
set_obj(x, obj)
set_lb(x, lb)
# S4 method for class 'OptimizationProblem,ANY'
set_lb(x, lb)
set_ub(x, ub)
# S4 method for class 'OptimizationProblem,ANY'
set_ub(x, ub)
append_linear_constraints(x, rhs, sense, A, row_ids)
# S4 method for class 'OptimizationProblem,ANY,ANY,ANY,ANY'
append_linear_constraints(x, rhs, sense, A, row_ids)
remove_last_linear_constraint(x)
# S4 method for class 'OptimizationProblem'
remove_last_linear_constraint(x)
Arguments
- x
optimization_problem()
object.- obj
numeric
vector containing a new linear coefficient for each decision variable in the problem.- lb
numeric
vector containing a new lower bound for each decision variable in the problem.- ub
numeric
vector containing a new upper bound for each decision variable in the problem.- rhs
numeric
vector with the right-hand-side values for new constraints.- sense
character
vector with senses for new constraints (i.e.,">="
,"<="
, or "=
" values).- A
Matrix::sparseMatrix()
matrix with coefficients for new constraints.- row_ids
character
vector with identifiers for new constraints.
Value
A Matrix::dgCMatrix
, numeric
vector,
numeric
vector, or scalar integer
depending on the method
used.
Details
The following functions are used to query data.
nrow(x)
integer
number of rows (constraints).ncol(x)
integer
number of columns (decision variables).ncell(x)
integer
number of cells.modelsense(x)
character
describing if the problem is to be maximized ("max"
) or minimized ("min"
).vtype(x)
character
describing the type of each decision variable: binary ("B"
), semi-continuous ("S"
), or continuous ("C"
)obj(x)
numeric
vector specifying the objective function.A(x)
Matrix::dgCMatrix
matrix object defining the problem matrix.rhs(x)
numeric
vector with right-hand-side linear constraintssense(x)
character
vector with the senses of the linear constraints ("<="
,">="
,"="
).lb(x)
numeric
lower bound for each decision variable. Missing data values (NA
) indicate no lower bound for a given variable.ub(x)
numeric
upper bounds for each decision variable. Missing data values (NA
) indicate no upper bound for a given variable.number_of_planning_units(x)
integer
number of planning units in the problem.number_of_features(x)
integer
number of features the problem.
The following functions are used to update data. Note that these
functions return an invisible TRUE
indicating success.
set_obj(x, obj)
override the objective in the problem. Here,
obj
is anumeric
vector containing a new linear coefficient for each decision variable in the problem.set_lb(x, lb)
override the variable lower bounds in the problem. Here,
lb
is anumeric
vector containing a new lower bound.for each decision variable in the problem.set_ub(x, ub)
override the variable upper bounds in the problem. Here,
ub
is anumeric
vector containing a new upper bound.for each decision variable in the problem.remove_last_linear_constraint()
remove the last linear constraint added to a problem.
append_linear_constraints(x, A, sense, rhs, row_ids)
add an additional linear constraints to a problem. Here,
A
is aMatrix::sparseMatrix()
matrix,sense
is acharacter
vector with constraint senses (i.e.,">="
,"<="
, or "=
" values),rhs
is anumeric
vector with the right-hand-side values, androw_ids
is acharacter
vector with identifiers.